

A new approach to R&D at GSK

Dr. Hal Barron

25 July 2018

Cautionary statement regarding forward-looking statements

This presentation may contain forward-looking statements. Forward-looking statements give the Group's current expectations or forecasts of future events. An investor can identify these statements by the fact that they do not relate strictly to historical or current facts. They use words such as 'anticipate', 'estimate', 'expect', 'intend', 'will', 'project', 'plan', 'believe', 'target' and other words and terms of similar meaning in connection with any discussion of future operating or financial performance. In particular, these include statements relating to future actions, prospective products or product approvals, future performance or results of current and anticipated products, sales efforts, expenses, the outcome of contingencies such as legal proceedings, and financial results.

Other than in accordance with its legal or regulatory obligations (including under the Market Abuse Regulations, UK Listing Rules and the Disclosure Guidance and Transparency Rules of the Financial Conduct Authority), the Group undertakes no obligation to update any forward-looking statements, whether as a result of new information, future events or otherwise. Investors should, however, consult any additional disclosures that the Group may make in any documents which it publishes and/or files with the US Securities and Exchange Commission (SEC). All investors, wherever located, should take note of these disclosures. Accordingly, no assurance can be given that any particular expectation will be met and investors are cautioned not to place undue reliance on the forward-looking statements.

Forward-looking statements are subject to assumptions, inherent risks and uncertainties, many of which relate to factors that are beyond the Group's control or precise estimate. The Group cautions investors that a number of important factors, including those in this presentation, could cause actual results to differ materially from those expressed or implied in any forward-looking statement. Such factors include, but are not limited to, those discussed under Item 3.D 'Risk factors' in the Group's Annual Report on Form 20-F for FY 2017. Any forward-looking statements made by or on behalf of the Group speak only as of the date they are made and are based upon the knowledge and information available to the Directors on the date of this presentation.

A number of adjusted measures are used to report the performance of our business, which are non IFRS measures. These measures are defined and reconciliations to the nearest IFRS measure are available in our second quarter 2018 earnings release on page 39 and Annual Report on Form 20-F for FY 2017.

All expectations and targets regarding future performance should be read together with "Assumptions related to 2018 guidance and 2016-2020 outlook" on page 40 of our second quarter 2018 earnings release.

GSK has a strong presence and history of leadership in four major areas

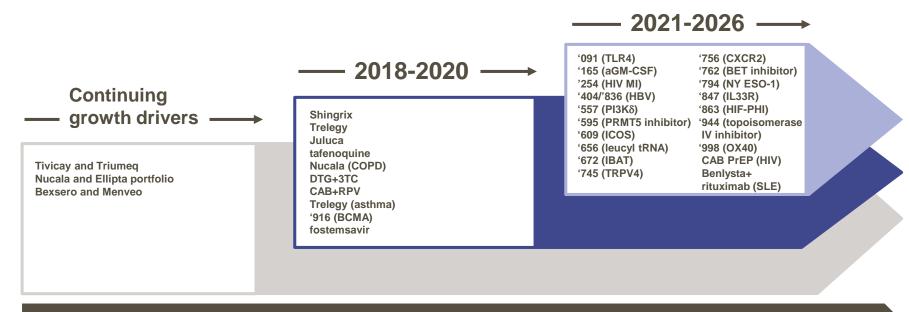
Leadership in Respiratory Medicine

Leadership in Vaccines

Impact on global public health

- 2 million vaccine doses per day for +160 countries
- . Broad portfolio to protect throughout life (22 out of the 30 currently vaccine preventable diseases)
- Reaching ~40% of the world's children
- 1st malaria vaccine for children, recommended by WHO for phased introduction in Africa
- . 17bn polio vaccine doses since 1988 to contribute to the Global Polio Eradication Initiative
- *70% of our vaccine doses go to low and middle income countries
 850 million vaccine doses committed to Gavi at reduced prices to help protect 300 million children in the developing world by 2024

Leadership in HIV/AIDS



Leadership in Global Health Science and partnership

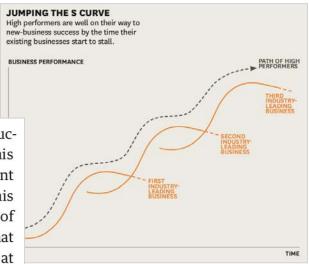
Driving our growth outlook beyond 2020

Base business portfolio optimisation; limited exposure to patent expiries

Consumer Health power brands

High performing businesses reinvent themselves

Reinvent Your Business Before It's Too Late


Watch Out for Those S Curves

by Paul Nunes and Tim Breene

80 Harvard Business Review January-February 2011

Source: "Reinvent your business before it's too late", Paul Nunes and Tim Breen, Harvard Business review. Jan-Feb 2011

cessful, run out of room to grow. Faced with this unpleasant reality, they are compelled to reinvent themselves periodically. The ability to pull off this difficult feat—to jump from the maturity stage of one business to the growth stage of the next—is what separates high performers from those whose time at the top is all too brief.

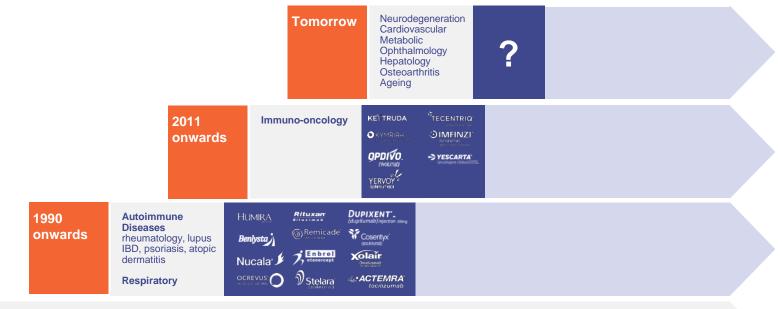
The key is understanding what problem you are trying to solve, and what levers you have to engender the change

Science **Technology Culture**

3 Components to our new R&D approach

Science **Technology** Culture

The industry needs more innovative medicines for patients with real unmet needs.


Drugs that modulate the immune system have had profound effects on patients with many different diseases.

Our scientific understanding of the role the immune system plays in the development of human disease is rapidly advancing.

GSK has deep understanding in Immunology, with several promising medicines in the pipeline.

Drugs that modulate the immune system have had profound effects on patients with many different diseases

1950 onwards

Steroids

Standard of care for respiratory, MS, rheumatic disease, and many more.

Scientific understanding of the role the immune system plays in disease is expanding

these findings suggest that the complement-depende

Immunomodulators as adjuvants for vaccines and antimicrobial therapy

Erin F. Nicholls, Laurence Madera, and Robert E. W. Hancock

Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada

Neuroinflammation in Parkinson's disease and its potential as therapeutic target

Emerging targets in neuroinflammationdriven chronic pain

to the pathogenesis of

Broad portfolio with strong focus in immunology

Phase 1

2831781* (LAG3) ulcerative colitis

3008348 (aVb6 integrin antagonist) IPF

3358699* (BET targeted inhibitor) RA

3858279* (CCL17 antagonist) OA

2636771 (Pl3kb inhibitor) cancer

2983559 (RIP2k inhibitor) IBD

3036656* (leucyl t-RNA inhibitor) TB

3640254 (HIV maturation inhibitor) HIV

3511294* (IL5 LA antagonist) asthma

2292767 (Pl3kd inhibitor) COPD/asthma

3810109* (broadly neutralizing antibody) HIV

Phase 2

3196165* (GM-CSF inhibitor) RA

3389404*/3228836* (HBV ASO) HBV

3772847* (IL33r antagonist) severe asthma

2982772 (RIP1k inhibitor) pso/RA/UC

3359609* (ICOS receptor agonist) cancer

3377794* (NY-ESO-1 TCR) cancer

2586881* (rhACE2) acute lung injury/PAH

1325756 (danirixin CXCR2 antagonist) COPD

2140944 (topoisomerase IV inhibitor) antibacterial

2269557 (nemiralisib PI3Kδ inhibitor) COPD"

2330811 (OSM antagonist) systemic sclerosis

 $\textbf{`852*+'698* (SAP antagonist)} \; \text{AL/ATTR-CM}$

2881078 (SARM) COPD muscle weakness"

1795091 (TLR4 agonist) cancer

2245035 (TLR7 agonist) asthma

2862277 (TNFR1 antagonist) acute lung injury

2798745 (TRPV4 antagonist) cough

3174998* (OX40 agonist) cancer

525762 (BET inhibitor) cancer

2330672 (IBAT inhibitor) cholestatic pruritus

3326595* (PRMT5 inhibitor) cancer

GR121619* (oxytocin) postpartum haemorrhage

Pivotal/Registration

Benlysta + Rituxan SLE"

cabotegravir** + rilpivirine* LA HIV

D3, dolutegravir + lamivudine HIV

1278863 (daprodustat HIF-PHI) anemia

3684934 (fostemsavir HIV AI) HIV

Nucala COPD/HES/nasal polyps

Trelegy* asthma

tafenoquine* malaria***

Dectova* IV influenza

2857916* (BCMA ADC) multiple myeloma*

Vaccines

Rotavirus - Phase 3

MMR - Phase 3 (US)

Ebola - Phase 2

Strep pneumonaie next gen - Phase 2

COPD - Phase 2

Hepatitis C - Phase 2

Malaria next gen - Phase 2

MenABCWY - Phase 2

Shigella - Phase 2

Tuberculosis - Phase 2

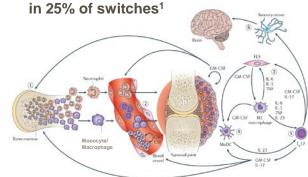
RSV - Phase 2

HIV - Phase 2

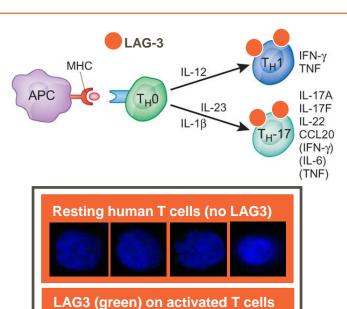
Flu universal - Phase 1

immunomodulators in development

^{*}In-license or other alliance relationship with third party
** Additional indications also under investigation


^{***} Received FDA approval 20 July 2018

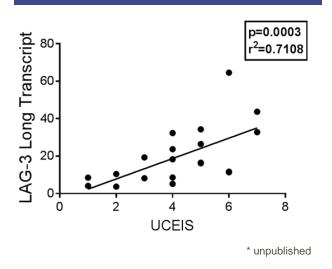
GSK'165 (aGM-CSF): potential for a disease modifying effect in rheumatoid arthritis (RA) with a unique impact on pain

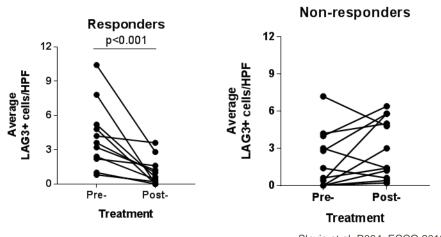

The target	 GM-CSF is a pro-inflammatory cytokine that induces differentiation and proliferation of granulocytes and macrophages One of the first cytokines detected in human synovial fluid from inflamed joints Preclinical data suggests a broader range of actions than existing biologics (including a beneficial effect on pain)
The agent	GSK'165 is a fully humanised antibody targeting anti-granulocyte macrophage colony-stimulating factor (aGM-CSF)
Current status	 Positive Phase 2b results in RA in house; clinical data to be presented at an upcoming conference Discussions with regulators planned to advance development rapidly in RA

- Unmet need remains in RA despite development of new classes of agent (JAK inhibitors, anti IL6): ~50% of patients do not achieve low disease activity criteria within 12 months of aTNF treatment and ~80% do not achieve Disease Activity Score 28 (DAS28)¹
- Currently 45% of patients report daily pain despite treatment with targeted therapies and pain is the key driver

GSK'781: targeting the inflammatory cascade through depletion of recently activated LAG-3+ T cells

The target	 Lymphocyte Activation Gene-3 Marker of early T-cell activation (predominantly expressed on newly activated CD4+ & CD8+ T-cells) Negative regulator of T-cell response
The agent	 GSK'781 is a humanised monoclonal antibody: Specific to the Lymphocyte Activation Gene-3 (LAG-3) protein Afucosylated to enhance ADCC
Current status	 Lead indication : ulcerative colitis Phase 1b studies ongoing PoC data expected 2020




Experimental medicine studies support UC as lead indication

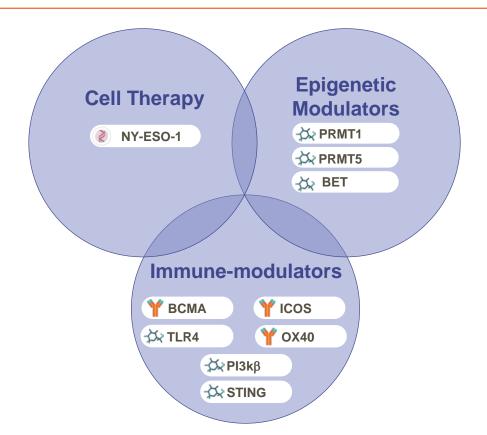
Gut transcript levels correlate with endoscopic index of disease activity*

LAG3+ cell numbers (IHC) reduce in responders but not non responders to established biologics

Slevin et al. P064, ECCO 2018

Dose dependent depletion of LAG-3 positive cells was demonstrated in FTiH/Phase 1b study

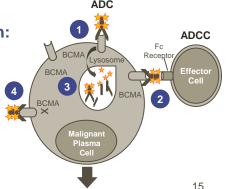
GSK's expertise in immunology will enable success in immuno-oncology


Monoclonal Antibodies

Cellular Therapies

Synthetic/small Molecules

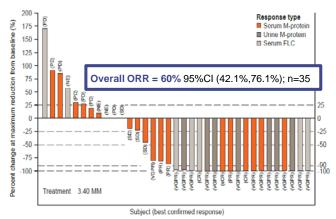
GSK '916: First-in-class anti-BCMA ADC agent for treatment of multiple myeloma

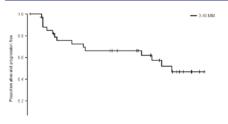


BCMA plays a key role in plasma cell survival It is found on the surfaces of plasma cells and is The expressed on malignant plasma cells target Not expressed in healthy tissues GSK'916 is a humanised IgG1 antibody The targeting BCMA (B-cell maturation antigen) Linked to the anti-mitotic agent MMAF agent Afucosylated to enhance ADCC New modality in multiple myeloma: first ADC Easy and convenient to administer: 1h infusion q3w Kev No pre-medication required for infusion reactions attributes Pre-medication with steroid eye drops New MoA enabling diverse combination Breakthrough and PRIME designations

- Multiple myeloma, also known as plasma cell myeloma.
 - is a cancer of plasma cells, a type of white blood cell normally responsible for producing antibodies.
- Multiple myeloma is treatable, but generally incurable.
- Globally, multiple myeloma affected 488,000 people and resulted in 101,100 deaths in 2015.
- Without treatment, typical survival is seven months, with current treatments, survival is usually 4–5 years

Four mechanisms of action:


- 1.ADC mechanism
- 2.ADCC mechanism
- 3.BCMA receptor signaling inhibition
- 4.Immunogenic cell death


GSK'916 anti-BCMA ADC: robust single agent activity in heavily pre-treated/refractory patients

Drug, Sponsor	Line of therapy; Trial	ORR	mPFS	mOS
¹ Kyprolis [‡] (IV), monotherapy Amgen	3L+, Single arm, N=266	23.7%	3.7m	15.6m
² Darzalex [‡] (IV), monotherapy Janssen	4L+, Single arm, N=106	29.2%	3.7m	17.5m
GSK'916 (IV), monotherapy	More than 50% of patients had ≥5 lines	60%	7.9m	NA
	(40% Darzalex [‡] treated),	(43% in	(6.8m in Darzalex [‡]	
	Single arm, N=35	Darzalex [‡] exposed)	exposed)	

Most frequent adverse events (AEs)

Corneal events 63%Thrombocytopenia 57%

Corneal events - mostly low grade (9% Gr3)

- Manageable with steroid eye drops
- Dose reductions

Hematologic AEs (including thrombocytopenia)

- Frequent in MM population due to disease

Infusion related reactions 23%

- Occur at first dose without premedication
- Manageable
- Do not recur with subsequent dose

1: Siegel et al. Blood (2012); 2: Lonial et al., Lancet (2016). GSK'916 data presented at ASH 2017; †Trademarks are the property of their respective owners

GSK'916: broad development plan initiated

Ect lounch

First launch in 4L in 2020; 2L launch planned for 2023

Development strategy for use in:

4L/3L
Monotherapy and combinations

					Study start	Est launch
	DREAMM-1	pilot	relapsed/ refractory patients	'916 monotherapy, single arm, n=73	2014	
	DREAMM-2	pivotal	daratumumab failures	'916 monotherapy, single arm, n=155	July 2018	2020
	DREAMM-3	pivotal	failed lenalidomide and proteasome inhibitor	'916 monotherapy vs. PomDex, n=320	2019	2022
7	DREAMM-4	pilot	relapsed/ refractory patients	'916 + PD1 combination, single arm, n=40	4Q18	
	DREAMM-5	platform	relapsed/ refractory patients	'916 + novel combinations, n=245	2019	

36k patients*

2L Combination with SOC

DREAMM-6	pilot	failed 1 prior therapy	'916+LenDex OR '916+BorDex open label, n= 90	Q3 2018	
DREAMM-7	pivotal	failed 1 prior therapy	'916+BorDex vs. Dara+BorDex, n= 478	2019	2023
DREAMM-8	pivotal	failed 1 prior therapy	'916+PomDex vs. PomBorDex, n= 449	2019	2024

50k patients*

Combination with novel and SOC agents

DREAMM-9	pivotal	transplant Ineligible	'916+SoC vs SOC, n=TBC	2020	TBC
DREAMM-10	pivotal	transplant Ineligible	'916+novel agent vs SOC, n=TBC	2021	TBC

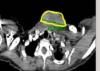
56k patients*

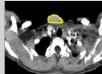
^{*} Treatable patients in G7 (US, EU5, Japan), Kantar Health 2031 projected; 3L pts 26k, 4L 10k;~65-70% 1L MM pts undergo transplant (source IPSOS, March 2018) SOC: standard of care

Early stage oncology portfolio with near term data read outs

GSK'609 ICOS agonist

- humanised IgG4 anti-ICOS agonist monoclonal antibody, engineered to provide non-depleting 'best in class' agonist activity
- First-in-human trial ongoing across several cancers
- Clinical activity observed with both monotherapy and PD-1 combination (pembrolizumab)
- Several combinations to be tested in platform study starting year end 2018



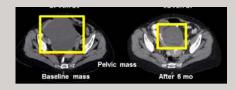

Confirmed PR in 64yr old male head & neck cancer patient

PoC anticipated 2H 2018

GSK'595 PRMT5 inhibitor

- First-in-class agent with potential broad activity across multiple haematologic and solid cancers
- Dose escalation ongoing
- PRMT5 highly expressed in cancers; high expression associates with poor survival
- Clinical responses seen in cervical cancer and adenoid cystic carcinoma (ACC)

Baseline mass

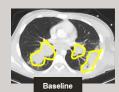

Wk8 (60% reduction)

Confirmed PR in 38yr old female cervical cancer patient

PoC anticipated 2H 2019

GSK'998 OX40 agonist

- humanised, engineered IgG1 OX40 agonist mAb
- Mono and PD-1 combo dose escalation completed
- Clinical activity observed in monotherapy and PD-1 combination (pembrolizumab)
- TLR4/OX40 combo dose escalation is ongoing




Confirmed PR in 66yr old female liposarcoma patient

PoC anticipated 2H 2020

GSK'762 BET inhibitor

- Oral epigenetic-targeted drug, being developed as a novel treatment for a broad range of solid and blood cancers
- Evidence of activity as monotherapy in NUT midline carcinoma
- Ongoing combination studies in breast and prostate cancer with read outs in 2019

Confirmed PR in 18yr old male NUT midline carcinoma patient

PoC anticipated 2H 2019

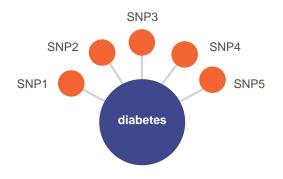
PoC: proof of concept

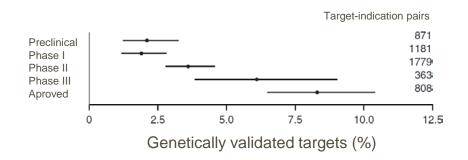
Science **Technology** Culture

Drug discovery and development is very risky with <10% of drugs that undergo clinical testing ultimately becoming medicines¹.

Medicines with genetic validation succeed nearly 2x more often than those without².

^{1.} Parsing clinical success rates. Asher Mullard. Nature Reviews Drug Discovery June 2016

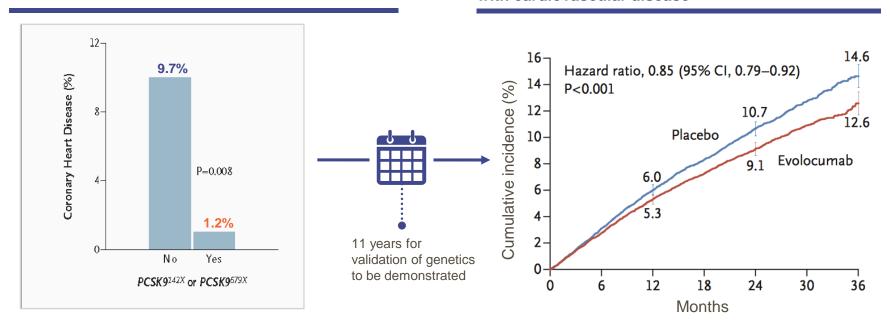

^{2.} The support of human genetic evidence for approved drug indications. Nelson et al, Nature Genetics, 47,856-860 (2015)


"Genetically validated" targets have a higher probability of success¹

GWAS focuses on diseases of interest and looks for genetic associations

Drugs with human genetic evidence nearly 2x more likely to be successful¹

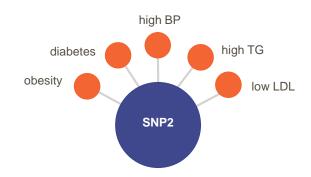
^{1.} Adapted from Nelson et al, Nature Genetics, 47,856-860 (2015)

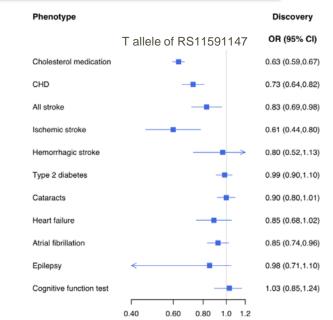


PCSK9: the power of genetically validated targets

Heterozygous carriers of PCSK9 loss-of-function alleles have lower LDL and fewer CV events

Evolocumab and clinical outcomes in patients with cardiovascular disease


PheWAS can enable discovery of novel genetic associations



PheWAS focuses on SNP/gene of interest and looks for phenotype associations

Large-scale phenome-wide association study of PCSK9 loss-of-function variants demonstrates protection against ischemic stroke

Abhiram S. Rao¹, Daniel Lindholm^{2,3}, Manuel A. Rivas⁴, Joshua W. Knowles⁵, Stephen B. Montgomery^{6,7}, Erik Ingelsson^{8*}

A new approach to drug discovery is needed to make this a reality

A new approach to drug discovery is needed to make this a reality

A new approach to drug discovery is needed to make this a reality

23andMe database metrics: massive engaged database

5m+
customers

>80% consent to research and recontact

1.5b+
survey
questions
answered

Genotype data

Phenotype data

Biobanked samples

Longitudinal data

Ability to re-contact

No individual will be identifiable to GSK. Continued protection of data and privacy is the highest priority for both GSK and 23andMe

Leucine rich-repeat kinase 2 (LRRK2): a genetically validated target for Parkinson's Disease

The target	 Leucine rich-repeat kinase 2 (LRRK2) is a genetically validated target for Parkinson's disease
The agents	 GSK'984 and GSK'813 are LRRK2 kinase inhibitors Opportunity to modify disease, while current therapies symptomatic only Early treatment to prevent disease is possible if LRRK2 inhibition is shown to modify disease
Current status	 2 diverse GSK molecules poised to enter the clinic in 2019 Opportunity to accelerate

- 2nd most prevalent neurodegenerative disease
- Genetically validated targets provide an opportunity to treat earlier in the disease
- If LRRK2 inhibition benefits the rare genetically driven patients it may work in others (as in PCSK9)

NEURODEGENERATION

LRRK2 kinase in Parkinson's disease

6 APRIL 2018 • VOL 360 ISSUE 6384 sciencemag.org SCIENCE

Highly potent, selective, and brain penetrant LRRK2 inhibitors have been reported. Such drugs could benefit not only individuals bearing *LRRK2* mutations but also other patients in whom LRRK2 activity is driving the disease. Much research is taking place to develop tests to interrogate LRRK2 activity and function in patients.

LRRK2 inhibitor programme: 23andMe's advantage to expedite clinical trial recruitment

Identifying eligible participants is a time intensive and costly process

In the US:

- ~1M individuals with Parkinson's Disease
- ~135,000 LRRK2 G2019S carriers
- ~10,000-15,000 Parkinson's Disease patients who are LRRK2 G2019S carriers

Clinical trial sites would need to genotype 100 Parkinson's Disease patients to find **one** LRRK2 G2019S carrier

23andMe database currently includes:

- >10,000 re-contactable individuals with Parkinson's Disease
- >3,000 re-contactable LRRK2 G2019S carriers
- >250 re-contactable LRRK2 G2019S carriers with Parkinson's Disease
- Ongoing efforts to increase and engage the LRRK2
 G2919S cohort to identify newly diagnosed individuals

23andMe provides expedited and focused clinical trial recruitment

- Strategic trial site selection to maximize enrollment at each site
- Flexible and streamlined recruitment: pace recruitment appropriate to sites' ability to screen, randomize and treat participants; ability to screen on comorbidities and select inclusion criteria
- Opportunity to significantly reduce total clinical trial recruitment duration

23andMe and GSK exclusive collaboration

Collaboration offers scale, diversity, sustainability for advancing therapeutic programs

Questionnaire yields unique phenotype information vs other biobanks

Can deploy custom surveys to dive deeper into specific diseases

Allows rapid recruitment of clinical trials based on genotype, phenotype and proximity to study centres

Improved target selection (higher PoS, and safer, more effective medicines)

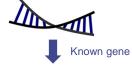
Allows more efficient/effective identification and recruitment of patients for clinical studies

Empowers patients!

Science **Technology** Culture

Technology has been a driver of innovation in many industries, especially science and medicine.

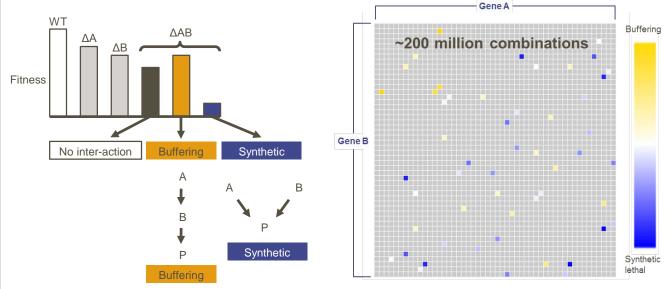
Functional genomics: the power of gene editing to unravel biology at scale



Reverse genetics (think PheWAS) is the process of going from genotype to phenotype

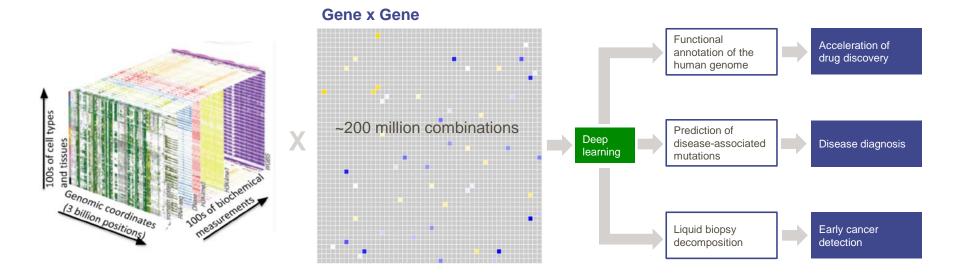
All experiments nature could do

Reverse genetic screens

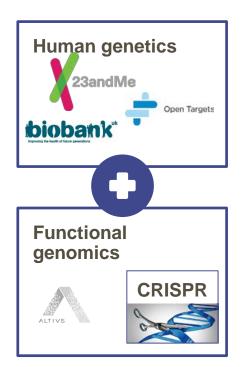


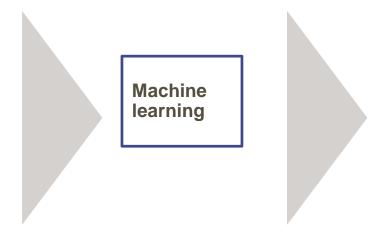
Phenotype resulting from alternative

Genetic interactions reveal functional relationships


Genetic interaction maps systematically measure how the presence of one gene modulates the phenotype of another gene.

Functional genomics (the power of gene editing) combined with machine learning will be very powerful


cell types x genome x (gene x gene) => a lot of data points!


Human genetics and functional genomics

Science and technology together to drive better R&D success

"Artificial Intelligence is the new electricity and is changing industry after industry." Stanford School of Business lecture by Andrew Ng

Machine Learning will enable the fields of science and medicine to evolve from an era of "Big Data" to an era of "Understanding Data"

More high quality targets

Faster development

Better success rates

Cell and Gene Therapy is a potentially disruptive technology that has the potential to transform medicine

GSK is positioned to lead the field through:

Pioneer in autologous cell therapy

- Early clinical and manufacturing expertise gained with Strimvelis*, and other rare disease candidates
 - Key: ability to scale autologous cell therapy for immuno-oncology
 - Requires automation and "closesystem" manufacturing
 - Miltenyi Biotec collaboration

Patented enabling technology

- Autologous cell therapy: manual approaches to transfection (viral vector generation) and transduction have high COGS, limiting potential applicability
- Industry-wide shortage of viral vector
- GSK's patented proprietary SCLT** technology industrializes lentivirus vector production; expected to reduce COGS 5-10-fold
- Opportunity to licence technology and leverage royalty opportunities

Strong pipeline of candidate antigens, including:

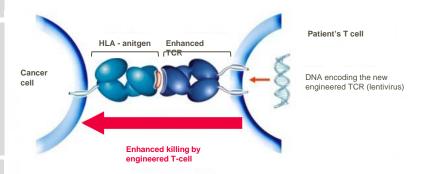
- Leading TCR-T capability, accessing solid tumours
- Access to further target antigens through partners (Adaptimmune, Miltenvi Biotec, others)
- Novel technologies to enhance activity of engineered cell products in solid cancer

GSK'794: NY-ESO-1 – a potential first to market TCR-T autologous cell therapy for solid tumours

The target

 NY-ESO-1 has significant expression in several tumour types, including NSCLC, sarcoma and myeloma

The agent


- GSK'794 is a TCR-T cell therapy targeting the NY-ESO peptide
- In-licensed from Adaptimmune
- NY-ESO-1 provides PoC for the TCR technology and access for a portfolio of new targets
- Next generation engineering will allow us to assess technologies to enhance activity and/or synergistic combinations that can be utilized across the whole portfolio

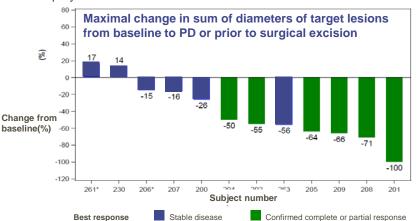
Current status

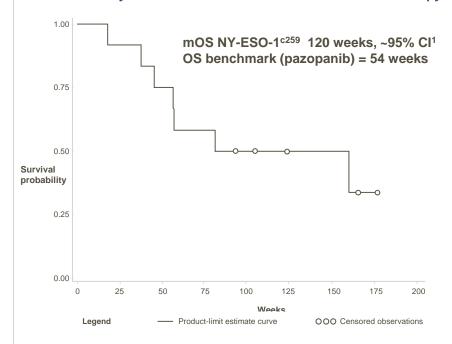
- Ongoing studies in synovial sarcoma, MRCLS, MM and NSCLC
- Completed transition to GSK in July 2018

NY-ESO-1^{c259} TCR-T:

affinity-enhanced TCR enabling identification and killing of target tumor cells

Natural NY-ESO-1 TCR $K_D = 9.3 \mu$ M NY-ESO-1^{c259} TCR $K_D = 0.73 \mu$ M


Affinity-enhancement: enables recognising tumour antigens expressed at low levels


GSK'794 NY-ESO-1c259 TCR-T is transformational in improving ORR and mOS in synovial sarcoma

- Confirmed antitumour activity in 10/12 subjects treated
- Tumour shrinkage over several months.
- Circulating NY-ESO-1c259T cells detectable in all patients and persisting >6 months in all responders
 - Central memory and stem cell memory cells that remained polyfunctional with no evidence for T cell exhaustion

Metastatic synovial sarcoma is incurable with standard therapy

^{1.} Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1c259T Cells in Synovial Sarcoma.

Innovation

Expanding the power of our strategy through Business Development

Therapeutic opportunities

- Targets aimed at modulating the immune system
- Genetically validated targets
- Targets that complement our current pipeline

Platforms and technologies opportunities

- Human Genetics & Functional Genomics
- Immune Biology
- Machine Learning & Data Analytics
- Genetic & Health Databases
- Cell & Gene Therapy
- New/complementary therapeutic modalities

Out-licensing opportunities

 Identify partners who can accelerate the delivery of medicines from our portfolio to patients New programs that enhance our strategy

Collaborations that amplify or leverage our capabilities

Collaborations that enable us to focus on what we do best

Science **Technology Culture**

Culture matters. A lot!

Culture change will drive solutions to problems that need to be fixed

Following the science	Smart risk-taking	Single accountable decision making	Focus	Outstanding people
Therapeutic area and modality agnostic approach in research	Incentivise people to make courageous and "smart" decisions	Consensus can kill innovation and dramatically slow down decision making	Aggressively resource your big ideas and stop other projects	Demand, develop and retain the best - outstanding talent attracts outstanding talent

Smart risk-taking

Good outcome

Bad outcome

Good decision

Success

Celebrate the good decision and successful outcome

Smart risk-taking

Needs to be celebrated to foster innovation

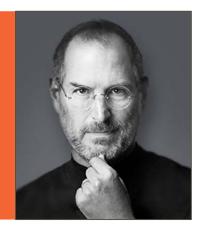
Bad decision

Lucky!

Do not celebrate - luck is not a strategy

A learning opportunity

Focus: prioritisation is critical


"More organizations die of indigestion than starvation."

David Packard

Simplify. Simplify.

"I'm as proud of many of the things we haven't done as the things we have done. Innovation is saying no to a thousand things."

Steve Jobs

Refocusing to reinvest

65

Decisions made to terminate, partner or divest programmessince April 2017* 42

programmes were in clinical phase, and the remainder were preclinical >400 FTEs

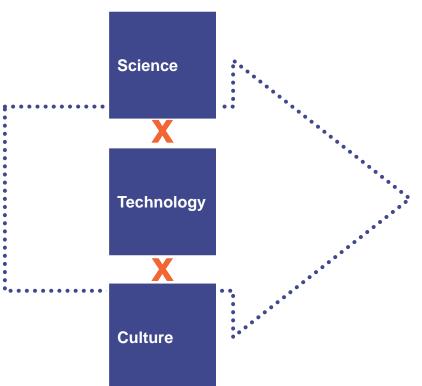
re-allocated to priority programmes

Innovation

Upcoming milestones that will inform our progress

	2H 2018	1H 2019	2H 2019	1H 2020	2H 2020
Submission	dolutegravir+lamivudine (D3) HIV	fostemsavir (attachment inhibitor) HIV	Trelegy asthma		mepolizumab HES
		cabotegravir+rilpivirine HIV treatment	GSK'916 (BCMA) 4L MM monotherapy		mepolizumab NP
					GSK'944 (gepotidacin) antibacteria
otal data dolutegravir+lamivudine (D3) HIV	Trelegy asthma	GSK'916 (BCMA) 4L MM monotherapy	mepolizumab HES	belimumab+rituximab SLE	
	cabotegravir+rilpivirine HIV treatment			mepolizumab NP	GSK'944 (gepotidacin) antibacteri
					cabotegravir HIV PrEP
					GSK'863 (daprodustat) anemia
oC data	GSK'609 (ICOS) cancer therapy	GSK'294 (IL5 LA antagonist) asthma	GSK'254 (maturation inhibitor) HIV	GSK'811 (oncostatin M) SSc	GSK'109 (bNAb N6LS) HIV
oC data	GSK'609 (ICOS) cancer therapy	GSK'294 (IL5 LA antagonist) asthma GSK'772 (RIP1 kinase) RA	GSK'254 (maturation inhibitor) HIV GSK'745 (TRPV4) cough	GSK'811 (oncostatin M) SSc belimumab+rituximab Sjogren's syndrome	GSK'109 (bNAb N6LS) HIV GSK'781 (LAG3) UC
oC data	GSK'609 (ICOS) cancer therapy	, , , , ,	· · · · · · · · · · · · · · · · · · ·	belimumab+rituximab Sjogren's	
oC data	GSK'609 (ICOS) cancer therapy	GSK'772 (RIP1 kinase) RA	GSK'745 (TRPV4) cough GSK'595 (PRMT5) cancer	belimumab+rituximab Sjogren's syndrome GSK'078 (SARM) COPD muscle	GSK'781 (LAG3) UC
oC data	GSK'609 (ICOS) cancer therapy	GSK'772 (RIP1 kinase) RA GSK'847 (IL33R) severe asthma	GSK'745 (TRPV4) cough GSK'595 (PRMT5) cancer monotherapy GSK'762 (BET inh) mCRPC and ER+	belimumab+rituximab Sjogren's syndrome GSK'078 (SARM) COPD muscle weakness GSK'794 (NY-ESO) NSCLC	GSK'781 (LAG3) UC GSK'348 (avb6) IPF GSK'771 (Pl3kb) cancer combo
oC data	GSK'609 (ICOS) cancer therapy	GSK'772 (RIP1 kinase) RA GSK'847 (IL33R) severe asthma GSK'881 (ACE2) PAH	GSK'745 (TRPV4) cough GSK'595 (PRMT5) cancer monotherapy GSK'762 (BET inh) mCRPC and ER+ breast combo therapy	belimumab+rituximab Sjogren's syndrome GSK'078 (SARM) COPD muscle weakness GSK'794 (NY-ESO) NSCLC mono/combo therapy GSK'916 (BCMA) 2L MM combo	GSK'781 (LAG3) UC GSK'348 (avb6) IPF GSK'771 (Pl3kb) cancer combo therapy GSK'091 (TLR4) cancer combo

New R&D approach will support the development of current clinical portfolio


From

Spend spread thinly across too many programmes ("shots on goal" strategy)

Consensus-driven decision making

R&D/Commercial silos

Limited Business Development activity

Ta

Backing the best assets, and removing those that don't look promising

Culture of accountability where smart risk-taking and courageous decisions are made by individuals and rewarded

Robust governance model with scientific peer review, commercial input and data-driven decisions

Leveraging Business
Development to optimise
our portfolio

Science **Technology Culture**

We will seek to understand how the immune system causes disease in a therapeutic area agnostic manner and use human genetics to generate new targets and direct our focus

We will invest in advanced technologies (such as functional genomics, machine learning and cell therapy) to leverage this science

We will create a culture that incentivises courageous and smart risk-taking, ensures clarity of decision-making and hires and retains outstanding people

High quality targets with higher success rates

Faster development more life-cycle options

Transformative therapies

Science

X

Technology

X

Culture

Next generation of medicines for patients

Thank you

Q&A panel

Axel HoosOncology Therapy
Area

Kim SmithGlobal Research and Medical Strategy, ViiV

Gijs van den Brink Immunoinflammation R&D

Emmanuel Hanon R&D Vaccines

John Lepore R&D Pipeline

Kevin Sin R&D Pharmaceuticals Business Development

Kate Knobil Chief Medical Officer

Tony Wood
Platform Tech &
Science

Pauline Williams
Global Health